Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Bis(methyl 2-pyridylmethylidenehydrazinecarbodithioato)cobalt(III) perchlorate

Qing-Guang Zhan, ${ }^{\text {a }}$ Guo-Bi Li, ${ }^{\text {a }}$ Rong-Hua Zeng, ${ }^{\text {a }}{ }^{\text {He-Ping Zeng }}{ }^{\text {b }}$ and Yue-Peng Cai ${ }^{\mathbf{a} *}$
${ }^{\text {a }}$ School of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China, and ${ }^{\mathbf{b}}$ Institute of Functional Molecules, South China University of Technology, Guangzhou 51064, People's Republic of China

Correspondence e-mail: ypcai8@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in solvent or counterion
R factor $=0.048$
$w R$ factor $=0.126$
Data-to-parameter ratio $=17.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The brown cobalt(III) complex of the designed ligand bis(methyl 2-pyridylmethylidenehydrazinecarbodithioate) (HNNS), $\left[\mathrm{Co}(\mathrm{NNS})_{2}\right] \mathrm{ClO}_{4}$ or $\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{~S}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$, has been synthesized and characterized using single-crystal X-ray diffraction, elemental analysis and mass spectroscopic techniques. X-ray crystallography of the title compound has shown unambiguously that the crystallographic asymmetric unit consists of a $\left[\mathrm{Co}(\mathrm{NNS})_{2}\right]^{+}$cation and one ClO_{4}^{-}anion. The two NNS^{-}ligands coordinate orthogonally to the central $\mathrm{Co}^{\mathrm{III}}$ ion with a mer configuration.

Comment

The microbial enzyme nitrile hydratase (NHase) catalyzes the conversion of nitriles to amides and consists of an α, β heterodimer containing either a low-spin $\mathrm{Co}^{\text {III }}$ or a $\mathrm{Fe}^{\text {III }}$ ion at its active site (Kobayashi \& Shimizu, 1999). Although most of the reported model complexes of the $\mathrm{Co}^{\mathrm{III}}$ site in Co-NHase contain thiolate sulfur donors, only a subset of them also include carboxamide nitrogen in their ligand sets (Noveron et al., 1999). Kovacs and coworkers have consistently utilized Schiff base ligands with imine nitrogen donors to model the biological $\mathrm{Co}^{\mathrm{III}}$ site (Shearer et al., 2001). To date, many studies have been undertaken to investigate symmetrical and unsymmetrical Schiff bases formed from N-heterocyclic carboxaldehydes, thiosemicarbazides and alkyl hydrazinecarbodithioates, as well as their transition metal complexes. However, there have been only a few reports of the crystal structures of complexes containing the unsymmetrical Schiff base resulting from the condensation of 2-pyridinecarbaldehyde and methyl hydrazinecarbodithioate (Su et al., 1999; Akbar Ali et al., 2005). Recently, we have synthesized the $\mathrm{Co}^{\text {III }}$ complex of the S-containing Schiff base ligand methyl 2-pyridylmethylidenehydrazinecarbodithioate (NNS^{-}) (see scheme) in order to check the reactivity of the imine N atom in such model complexes. In this paper, we report the crystal structure of the title cobalt complex containing NNS^{-}, $\left[\mathrm{Co}(\mathrm{NNS})_{2}\right] \mathrm{ClO}_{4}$, (I).

Fig. 1 shows the molecular structure of complex (I), together with the atom-numbering scheme. In complex (I), the $\mathrm{Co}^{\mathrm{III}}$ ion has a distorted octahedral coordination environment and a pair of monodeprotonated ligands (NNS^{-}) coordinate to the $\mathrm{Co}^{\text {III }}$ ion through the thiolate S (S 1 and S 3), the pyridyl (tertiary) ring N (N 1 and N 4) and the azomethine N (N 2 and N5) atoms. The crystallographic asymmetric unit in the complex consists of a $\left[\mathrm{Co}(\mathrm{NNS})_{2}\right]^{+}$cation and one ClO_{4}^{-} anion, which is disordered. Two molecules of the tridentate methyl-2-pyridylmethylidenehydrazinecarbodithioate ligand coordinate to the $\mathrm{Co}^{\text {III }}$ ion to form four five-membered chelate

Received 2 August 2006
Accepted 8 September 2006
rings (Co1/N1/C3/C4/N2, Co1/S1/C5/N4/N3, Co1/N4/C13/C14/ N5 and Co1/N5/N6/C15/S3).

The geometry about the $\mathrm{Co}^{\text {III }}$ ion in (I) compares well with those reported for other similar structures (West et al., 1999). The shortening of the $\mathrm{Co}-\mathrm{N}$ distance involving the azomethine N atoms relative to that of the pyridyl ring N atoms may be attributed to the fact that the azomethine N is a stronger base than the pyridyl N . The two azomethine N atoms (N 2 and N 5) are trans to each other, while the pyridyl ring N atoms (N 1 and N 4) and the thiolate S atoms (S1 and S3) are in the cis positions.

The two tridentate ligands (NNS^{-}) in compound (I) are practically planar and orthogonal to each other; the dihedral angle between the two ligands is $92.87(3)^{\circ}$. In addition, in each ligand three individual rings, namely the pyridine and the two five-membered chelate rings, are individually almost planar, with small dihedral angles between them. The largest dihedral angle of $9.3(1)^{\circ}$ is between the pyridyl ring $\mathrm{N} 1 / \mathrm{C} 1-$ C 5 and the chelate ring Co1/S1/C7/N3/N2.

Figure 1
The asymmetric unit of compound (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only one disorder component is shown.

Experimental

A solution of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2}(134 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(20 \mathrm{ml})$ was slowly added to a solution of HNNS $(210 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ $(10 \mathrm{ml})$ and the mixture was refluxed for 1 h in a water bath. On slow evaporation of the resulting dark-brown solution, the desired $\mathrm{Co}^{\text {III }}$ complex was obtained. The reddish brown solids were filtered off, washed with cold ethanol and dried over anhydrous CaCl_{2} (yield 78%). Brown crystals of (I) were formed, suitable for X-ray diffraction. The assigned structure was substantiated by elemental analysis and MS data. Elemental analysis, calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClCoN}_{6} \mathrm{O}_{4} \mathrm{~S}_{4}$: C 33.04, H 2.01, N 14.02\%; found: C 32.95 , H 2.10, N 13.93\%. FAB$\operatorname{MS~m/z}(\%): 480\left(M^{+}+1,68\right), 479\left(M^{+}, 100\right)$.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{~S}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$

$$
Z=4
$$

$M_{r}=578.97$
Monoclinic, $P 2_{{ }_{0}} / c$
$a=10.783$ (2) А
$b=12.049$ (2) \AA
$c=17.613$ (3) \AA
$\beta=93.249(4)^{\circ}$
$D_{x}=1.683 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.27 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, brown
$V=2284.8$ (7) \AA^{3}
$0.26 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.734, T_{\text {max }}=0.785$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.126$
$S=1.04$
4990 reflections
289 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right.$).

$\mathrm{Co} 1-\mathrm{N} 2$	$1.884(3)$	$\mathrm{Co} 1-\mathrm{N} 4$	$1.977(3)$
$\mathrm{Co} 1-\mathrm{N} 5$	$1.888(3)$	$\mathrm{Co} 1-\mathrm{S} 3$	$2.2294(12)$
$\mathrm{Co} 1-\mathrm{N} 1$	$1.967(3)$	$\mathrm{Co} 1-\mathrm{S} 1$	$2.2403(11)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 5$	$176.69(13)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{S} 3$	$88.69(10)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1$	$81.93(13)$	$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{S} 3$	$168.11(9)$
$\mathrm{N} 5-\mathrm{Co} 1-\mathrm{N} 1$	$94.90(13)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$85.42(10)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 4$	$98.25(13)$	$\mathrm{N} 5-\mathrm{C} 1-\mathrm{S} 1$	$97.75(10)$
$\mathrm{N} 5-\mathrm{Co} 1-\mathrm{N} 4$	$82.76(13)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{S} 1$	$167.33(9)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 4$	$92.49(12)$	$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{S} 1$	$89.97(9)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{S} 3$	$93.64(10)$	$\mathrm{S} 3-\mathrm{Co} 1-\mathrm{S} 1$	$91.46(5)$
$\mathrm{N} 5-\mathrm{Co} 1-\mathrm{S} 3$	$85.34(10)$		

Atoms O1, O2 and O3 of the ClO_{4}^{-}anion were disordered over two positions, each with an occupancy factor of 0.5 . All H atoms were placed in idealized positions, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

metal-organic papers

structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors are grateful for funding from the National Natural Science Foundation of China and the Natural Science Foundation of Guangdong Province.

References

Akbar Ali, M., Mirza, A. H., Hamid, M. H. S. A. \& Bernhardt, P. V. (2005). Polyhedron, 24, 383-390.

Bruker (1998). SHELXTL (Version 5.1), SMART (Version 5.0) and SAINT (Version 6.36). Bruker AXS, Madison, Wisconsin, USA.
Kobayashi, M. \& Shimizu, S. (1999). Eur. J. Biochem. 261, 1-12
Noveron, J. C., Olmstead, M. M. \& Mascharak, P. K. (1999). J. Am. Chem. Soc. 121, 3553-3558.
Shearer, J., Kung, I. Y., Lovell, S., Kaminsky, W. \& Kovacs, J. A. (2001). J. Am. Chem. Soc. 123, 463-466.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Su, C. Y., Yang, X. P., Kang, B. S., Yu, K. B., Tong, Y. X. \& Mak, T. C. W. (1999) Bull. Chem. Soc. Jpn, 72, 2217-2222
West, D. X., Swearingen, J. K., Valdes-Martinez, J., Hernandez-Ortega, S., ElSawaf, A. K., van Meurs, F., Castineiras, A., Garcia, I. \& Bermejo, E. (1999). Polyhedron, 18, 2919-2929.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

